API Reference

This is the main reference for classes and functions present in trajminer.

trajminer: Base

Library essential classes and resources.

Classes

trajminer.TrajectoryData(attributes, data, tids)

Trajectory data wrapper.

trajminer.classification: Classification

Trajectory classifiers. Implementations of traditional classification algorithms work alongside with a trajectory similarity measure from trajminer.similarity.

Classes

classification.KNearestNeighbors([…])

K-Nearest Neighbors Classifier.

classification.TraClass()

TraClass: Trajectory Classification Using Hierarchical Region-Based and Trajectory-Based Clustering.

trajminer.clustering: Clustering

Clustering algorithms for trajectories. Implementations of traditional clustering algorithms work alongside with a trajectory similarity measure from trajminer.similarity.

Classes

clustering.AgglomerativeClustering(n_clusters)

Hierarchical Agglomerative Clustering.

clustering.DBSCAN([eps, min_samples, …])

DBSCAN Clustering.

clustering.KMedoids(n_clusters[, init, …])

K-Medoids Clustering.

trajminer.similarity: Similarity

Trajectory similarity measures.

Classes

similarity.EDR(dist_functions, thresholds)

Edit Distance on Real sequence.

similarity.LCSS(dist_functions, thresholds)

Longest Common SubSequence.

similarity.MSM(dist_functions, thresholds, …)

Multidimensional Similarity Measure.

similarity.MUITAS(dist_functions, …)

Multiple-Aspect Trajectory Similarity Measure.

Functions

similarity.pairwise_similarity(X[, Y, …])

Computes the similarity between trajectories in X and Y.

trajminer.utils: Utils

Utilities for supporting other classes and resources of the library.

Classes

utils.CSVTrajectoryLoader(file[, sep, …])

A trajectory data loader from a CSV file.

Functions

utils.distance.discrete(x, y)

Computes the discrete distance between two objects.

utils.distance.euclidean(x, y)

Computes the euclidean distance between two objects described by an array of floats.

utils.distance.haversine(x, y[, unit])

Computes the haversine distance between two pairs of latitude and longitude.

trajminer.preprocessing: Preprocessing

Preprocessing tools.

Classes

preprocessing.OneHotEncoder()

Encode trajectory features as the concatenation of the one-hot numeric array for each feature.

preprocessing.TrajectorySegmenter(attributes)

Trajectory segmenter.

Functions

preprocessing.filter_trajectory_length(data, …)

Removes trajectories by length criteria.

preprocessing.filter_label_size(data, …[, …])

Removes trajectories corresponding to sets of labels that do not meet size criteria.

preprocessing.filter_duplicate_points(data, …)

Removes duplicates of trajectory points according to the given criteria.